de.uni_leipzig.cvk.data.cluster
Class ClusterAlgorithmMCL

java.lang.Object
  extended by de.uni_leipzig.cvk.data.cluster.ClusterAlgorithm
      extended by de.uni_leipzig.cvk.data.cluster.ClusterAlgorithmMCL
All Implemented Interfaces:
ClusterTableSettings

public class ClusterAlgorithmMCL
extends ClusterAlgorithm

Is a ClusterAlgorithm and an adapt for mcl algorithm of MarkovClustering class. Implements the clustering(String[], double, String, String, String, String) method and overrides default available settings in abstract class.

 

Field Summary
 
Fields inherited from class de.uni_leipzig.cvk.data.cluster.ClusterAlgorithm
config_A, config_B, config_C, config_D, filename
 
Fields inherited from interface de.uni_leipzig.cvk.data.cluster.ClusterTableSettings
CLUSTER_COLUMN_ID, CLUSTER_COLUMN_ID_TYPE, CLUSTER_COLUMN_NAME, CLUSTER_COLUMN_NAME_TYPE, CLUSTER_COLUMN_SIZE, CLUSTER_COLUMN_SIZE_TYPE
 
Constructor Summary
ClusterAlgorithmMCL()
           
 
Method Summary
protected  prefuse.data.Table clustering(java.lang.String[] seeds, double threshold, java.lang.String values_A, java.lang.String values_B, java.lang.String values_C, java.lang.String values_D)
          An abstract method for a concrete clustering algorithm implementation or adaption.
 
Methods inherited from class de.uni_leipzig.cvk.data.cluster.ClusterAlgorithm
cluster, getA, getB, getC, getD, getSeparator, getTable, setFilename
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

ClusterAlgorithmMCL

public ClusterAlgorithmMCL()
Method Detail

clustering

protected prefuse.data.Table clustering(java.lang.String[] seeds,
                                        double threshold,
                                        java.lang.String values_A,
                                        java.lang.String values_B,
                                        java.lang.String values_C,
                                        java.lang.String values_D)
Description copied from class: ClusterAlgorithm
An abstract method for a concrete clustering algorithm implementation or adaption. The clustering method gets the cluster back in a table with a column name of ClusterTableSettings.CLUSTER_COLUMN_NAME and with a column type of ClusterTableSettings.CLUSTER_COLUMN_NAME_TYPE. The column ClusterTableSettings.CLUSTER_COLUMN_SIZE is reserved for a inner sort operation, you don't have to use it, but you can use this column to add the size of a cluster with type of ClusterTableSettings.CLUSTER_COLUMN_SIZE_TYPE, but be sure that every row is set with a value. This size defines the order of printing the clusters, the highest value of size for a cluster will print first.

Specified by:
clustering in class ClusterAlgorithm
Parameters:
seeds - selected nodes that will be used as seeds
threshold - threshold is between 0 and 1 or -1 for all nodes
values_A - value of config_A array
values_B - value of config_B array
values_C - value of config_C array
values_D - value of config_D array
Returns:
table with one or more columns