
ClusterVisualizationKit
Manual

University of Leipzig

Contributors:
R. Speck
A.-C. Ngonga Ngomo

Figure 1: A clustered 6-5-partite clique.

September 13, 2010

Contents

1 Introduction 3
1.1 Purpose . 3
1.2 Requirements . 3

2 Using the CVK 4
2.1 Launching . 4
2.2 Loading data . 4

2.2.1 Loading User-Generated Data 5
2.2.2 Loading automatically generated data 5

2.3 Configuring . 5
2.4 Clustering . 7

3 Supported Data Formats 8
3.1 GraphML/XML . 8
3.2 CSV/SSV/Tab/Txt . 8

4 Supported algorithms 9
4.1 BorderFlow . 9
4.2 k-Nearest Neighbours . 9
4.3 MCL . 9

5 Measurements 10
5.1 Median of average silhouette width 10
5.2 Average relative flow . 11
5.3 Normalized Cut . 11

6 Hardening 11
6.1 Hardening with MaxQuality strategy 12

6.1.1 MaxQuality with relative flow function 12
6.1.2 MaxQuality with silhouette function 12

6.2 Hardening with SuperSet strategy 13

7 Developers section 14
7.1 Packages . 14

7.1.1 The cvk package . 14
7.1.2 The bf package . 19
7.1.3 The mcl package . 19

7.2 Dependencies . 19
7.2.1 Prefuse . 19
7.2.2 Lucene . 19
7.2.3 Jung . 19

7.3 Bugs . 19
7.4 Change Log . 20

1

1 Introduction

This manual is intended as a guide for using the Cluster Visualization Kit
(CVK), a tool and framework for graph clustering. It presents the function-
ality of CVK in its current version. In addition, it provides insight in the
architecture of the underlying framework, so as to enable any user to extend
it as required for his purposes.

1.1 Purpose

Our main aim while developing the CVK was to provide a lightweight frame-
work that allows rapid integration and testing of novel graph clustering al-
gorithms. Roughly speaking, the CVK in its current version allows to (1)
visualize input graphs stored in several formats, (2) cluster the input graph
using any of the algorithms integrated, (3) integrate novel algorithms very
efficiently as required (see Section 7.1.1), (4) explore the resulting clustering
and (5) store the resulting clustering for further processing.

The toolkit is intended for both beginners and experts: the CVK pro-
vides an easy-to-use graphical interface for users that not yet familiar with
graph clustering. In addition, CVK’s modular architecture allows the rapid
integration of new clustering algorithms. Ergo, experts are provided with
means to (1) efficiently develop, (2) visualize the results and (3) evaluate
the quality of (new) clustering algorithms for graphs. The user interface
was designed to be as intuitive as possible, so as to allow the easy manipu-
lation of nodes and clusters during the exploration of the input graph and
resulting clustering. In addition, the tool implements several metrics that
provide a numeric impression of the quality of the clustering achieved by
the algorithm applied.

The visualization component is based on the prefuse visualization toolkit1,
the interesting part of graphs generated by the application (random graph
models) based on the jung framework2 and the Lucene search engine3 sup-
ports a fast search over nodes. The CVK implements the clustering algo-
rithms BorderFlow, k-Nearest Neighbours and MCL in its current version.
Further algorithms will be integrated soon. CVK is open-source and avail-
able under the BSD License.

1.2 Requirements

The only requirement to run the application is an installed JRE4 version 1.6
upwards.

1http://prefuse.org
2http://jung.sourceforge.net
3See http://lucene.apache.org/java/1_4_3 for all options.
4http://www.java.com/de/download/manual.jsp

2

http://prefuse.org
http://jung.sourceforge.net
http://lucene.apache.org/java/1_4_3
http://www.java.com/de/download/manual.jsp

2 Using the CVK

2.1 Launching

To start the application, double-click the ClusterVisualizationKit.jar file or
type the following in your terminal: java -jar ClusterVisualizationKit.jar.
Should you get Out of Memory errors, increase the maximum heap size for
your java virtual machine (JVM) via the -Xmx option5.

After you have started the application, you should see the main panel as
shown in figure below.

Figure 2: Welcome screen

2.2 Loading data

The first step in using the application is to read data. Two types of data can
be loaded into the CVK: user-generated data (i.e., a file) or automatically
generated data for tests purposes.

Figure 3: Toolbar

5http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html

3

http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html

2.2.1 Loading User-Generated Data

Currently, the CVK supports delimiter separated text files and the XML-
format GraphML as input format for user-generated data. To import such
data, use the toolbar or the corresponding keyboard shortcut as displayed
in figure 3. After you have selected “Open File” from toolbar menu, you will
see the dialog shown in 4. By using this dialog, you can choose the type of
files to import, i.e., whether a delimiter separated or a GraphML file should
be imported. The default “Open File” dialog is set to import delimiter
separated data files as they are more commonly used than GraphML. The
file extension is used to determine the file delimiter (3.2).

Figure 4: Open File Dialog.

2.2.2 Loading automatically generated data

This menu item allows you to load automatically generated data instead of
user-generated data. The basic intention behind this feature was to allow
users to view the results of algorithms or small graph without having to
encode a graph manually.
After selecting “Open Graph”, you will see the submenu as shown in figure
3. This submenu allows you to choose from various types of graphs to load,
including the a topped tetrahedron,random n-k partite cliques (i.e., graphs
that contains k cliques of n nodes, with 3 ≤ n ≤ 15, 2 ≤ k ≤ 14 and k ≤ n),
graphs generated by using the binomial model of Erdős and Rényi (n=100,
p = 0.02) and some others that comes from the prefuse library.

2.3 Configuring

After you have loaded your data into CVK, you may want to configure the
force layout to display your graph in a fashion suitable to your taste. To
achieve this, use the sliders (Figure 5 - left) in the three boxes NBodyForce,
DragForce and SpringForce. You can also change the Connectivity Filter,

4

this entry controls the maximal distance between nodes that are displayed
and the node that is currently selected. Obviously, pushing this value to
more than 3 when a large graph is loaded might lead to longer processing
time before a stable graph is displayed. To stop the animation, please use
the “Play/Pause” button on the menu bar.

One of the drawback of displaying nodes based on the surroundings of
the node that is currently selected is that nodes that are at an infinite dis-
tance (i.e., not connected) of the currently selected node never get displayed.
To guarantee that the user retains an overview of the graph, the interface
provide an overview window below the sliders. To ensure that all nodes
are displayed, we added the grid button that allows to display all nodes are
once. Another way to select a node and thus to display the surroundings of
the node is to use the clickable node table (figure 5 - right).

Figure 5: Force configurations (left) and clickable node table (right).

5

2.4 Clustering

Figure 6: Clustering configurations (left) and graph statistic (right).

The main aim of the CVK is to enable users to test clustering approaches.
To choose a clustering algorithm to process the data you loaded, go to the
cluster tab (figure 6 - left), pick one of the algorithms6 from the “Settings”
box and select/set the parameters you need for your clustering process. The
CVK was designed in such a way that each algorithm has its own clustering
configuration. For example, the BorderFlow and k-Nearest Neighbours al-
gorithms allow to select the nodes that are used as seed for clustering; they
also provide a threshold slider, which sets the percentage of the maximal
connectivity that a node can maximally have to be used as seed (obviously,
moving the slider to 0 causes all nodes to be used as seeds). After having
configured your clustering algorithm, press the “Cluster” button to start
the clustering process. Depending on the size of the input data and the
algorithm, the clustering might take a while. Please be patient.

After the completion of the clustering, the CVK allows you to navigate
through the clusters by using mouse actions on the main panel. By using
the color button, you can turn the display of the clusters to greyscale or
color. Finally, the “Save clusters” menu item under the folder icon allows
to save the results of the clustering for further processing or evaluation.

6See description in section 4

6

3 Supported Data Formats

The CVK support various file formats, which are explained below. Further-
more, it is possible to open such graphs directly from the menu bar in the
application as described in section 2.2.2. The use of edge weights is possible
in all file types. If no weights are set, the weight value is set to 1. Because
most clustering algorithms are defined in such a way that they do not sup-
port edges that begin and end at the same node, edges with the same node
as source and target are ignored when reading the input data. In addition,
nodes without edges are ignored.

3.1 GraphML/XML

GraphML is a XML format supporting graph structure and typed data
schemas for both nodes and edges. For more information about this format,
see the GraphML home page7. The only restriction of the CVK when read-
ing GraphML is that it does not support the mix of weighted and unweighted
edges within one graph.

3.2 CSV/SSV/Tab/Txt

The CVK supports an edge list file format in which each line is an edge. In
a line the first term is a source node, second term is a target node and the
last term is a weight. We use delimiter separated values, each term in a line
has to be separated dependents on the used file format extension as shown
in the following table.

File Extension Separator

csv comma
ssv space
tab/txt tabulator

7http://graphml.graphdrawing.org/

7

http://graphml.graphdrawing.org/

4 Supported algorithms

The CVK is intended to enable beginners to utilize exisiting algorithms and
developers to test their new algorithms. The current version of the CVK
implements the clustering algorithms described in the following.

4.1 BorderFlow

BorderFlow is a general-purpose graph clustering algorithm [2]. It uses
solely local information for clustering and achieves a soft clustering of the
input graph. The standard definition of clusters is that they have a maximal
intra-cluster density and inter-cluster sparseness. When considering a graph
as the description of a flow system, this definition of a cluster implies that
a cluster X can be understood as a set of nodes such that the flow within
X is maximal while the flow from X to the outside is minimal. The idea
behind BorderFlow is to maximize the flow from the border of each cluster
to its inner nodes (i.e., the nodes within the cluster) while minimizing the
flow from the cluster to the nodes outside of the cluster.

4.2 k-Nearest Neighbours

In pattern recognition, the k-nearest neighbours algorithm (k-NN) was orginally
a method for classifying objects based on closest training examples in the
feature space. k-NN is a type of instance-based learning, or lazy learning
where the function is only approximated locally and all computation is de-
ferred until classification. An object is classified by a majority vote of its
neighbors, with the object being assigned to the class most common amongst
its k nearest neighbors (k is a positive integer, typically small). If k = 1,
then the object is simply assigned to the class of its nearest neighbor. k-NN
can be used for seed-based clustering simply by stating that each of the
k− 1 nearest neighbors of an input seed are the elements of a cluster of size
k (seed + neighbors). Clusters that happen to containe the same elements
are merged to one cluster.

4.3 MCL

The basic idea underlying the MCL algorithm [5] is that dense regions (i.e.,
clusters) in sparse graphs correspond with regions in which the number of
k-length paths is relatively large. Thus, random walks of length k have
a higher probability to begin and end in the same dense region than for
other paths. The algorithm starts uses a stochastic matrix M to represent
the input graph. Then, it alternates two operations (expansion and infla-
tion) to compute the set of transition probabilities until M does not change
substantially. The result is a complete and does not contain overlapping
clusters.

8

5 Measurements

Several means for assessing the quality of a clustering have been defined in
the past. In this section, we describe those measurements that are computed
after the completion of each clustering (Figure 6-right). These metrics can
be easily extended as required by the user. In the following, we will assume
that G = (V,E, ω) is a weighted directed graph with a set of vertices V , a set
of edges E and a weighing function ω, which assigns a positive weight to each
edge e ∈ E. V can be partitioned into k subsets X1, ..., Xk. Furthermore,
we define Ω(X1, X2) =

∑
x1∈X1,x2∈X2

ω(x1x2) as the function that assigns
the total weight of the edges from a subset X1 ⊂ V to a subset X2 ⊂ V .
The CVK toolkit implements the median of average silhouette width, the
median of the relative flow and the normalized cut measures.

5.1 Median of average silhouette width

The silhouette measures of a set is given by the following equation[3]

s(x) =
b(x)− a(x)

max{a(x), b(x)}
where a(x) is the average similarity between vertex x ∈ X and all other
vertices in subset X, and b(x) is the average similarity between vertex x ∈ X
and all other vertices in the neighbour subsets to X.
The average of s(x) for all vertices x in a subset X, is called the average
silhouette width of X. The average s of s(x) for all vertices x ∈ V , is called
the average silhouette width for the entire data set.
”The Silhouette Coefficient(SC) is a measure where the maximum is taken
over all k for which the silhouettes can be constructed[...]”[1].

SC = maxks(k)

Values between 0.7 and 1.0 indicate clustering results with excellent sepa-
ration between clusters, for the range from 0.5 to 0.7 one finds that vertices
are clearly assigned to cluster centers. Values from 0.25 to 0.5 indicate that
cluster centers can be found, though there is considerable noise, below a
value of 0.25 it becomes practically impossible to find significant cluster
centers and to definitely assign the majority of data points.

We implemented the median of the average silhouette width smed to
provide users of the CVK with a quick evaluation of their clustering with
respect to the the partitioning of the input data:

smed =

{
sn+1

2
if n is odd

1
2(sn

2
+ sn

2
+1) if n is even

with sj ∈ {s1, ...sn} a sorted list of the average silhouette width of all Xi,
i ∈ {1, ..., k}.

9

5.2 Average relative flow

As another mean to asses the quality of a clustering, we implemented the
median of the relative flow[2], which is defined as:

F (X) =
Ω(b(X), X)

Ω(b(X), n(X))

where b(X) is the set of border vertex of X and n(X) is the set of direct
neighbors of X.

5.3 Normalized Cut

Any subset of vertices X ⊂ V creates a cut, which is a partition of V into
two disjoint subsets X and V \X. The size of a cut X of graph G is defined
as cut(X) = ω(X,V \ X) and measures the weight of edges that have to
be eliminated in order to obtain the two components X and V \ X. The
normalized cut[4] normalizes the cut measurement with the total sum of all
vertex degrees over all vertices in a subset X and is defined as

ncut(X1, ..., Xk) =
1

2

k∑
i=1

Ω(Xi, V \Xi)/vol(Xi)

where vol(X) =
∑

x∈X dx is the volume of subset X and dx =
∑

y ω(xy) is
the degree of vertex x ∈ X.

6 Hardening

Many clustering algorithms return overlapping (i.e., BorderFlow) clusters
or clusterings that do not cover all input data (i.e., DBScan, RNSC). The
CVK provides means to ensure that each clustering do not contain over-
lapping clusters and are complete, both characteristics being desirable for
several types of applications. Currently, the CVK implements two different
hardening strategies: MaxQuality and SuperSet. Both require the following
input data:

1. a graph G = (V,E, ω)

2. a set Ψ = {X1, ..., Xk} of k subsets of V with

3. ∀i ∈ {1, ..., k}Xi 6= ∅.

A hardening process consists of transforming the set Ψ of k subsets to a set
Ψ

′
of k

′
subsets such that ∀i, j ∈ {1, ..., k′}X ′

i ∩X
′
j = ∅.

10

6.1 Hardening with MaxQuality strategy

The MaxQuality strategy applies a function f , the quality function, that
assigns each subset X a value f(X) ≥ 0.

1. if ∃i ∈ {1, ..., k}|Xi| = |V | then remove Xi from Ψ

2. calculate f(Xi) for all Xi ∈ Ψ

3. sort all Xi by descending f(Xi)

4. put in a set Smax all Xi with maximal f(Xi)

5. if Smax contains h subsets X
′
such that

⋂
i∈{1,...,h}X

′
i = ∅ then put all

these h subsets to Ψ
′
, remove these h subsets from Ψ and go to step 7

6. else while Smax 6= ∅ do

(a) find subsets in Smax they share any vertex, put these in S
′
max and

remove them from Smax and from Ψ

(b) take all shared vertices v in
⋂
X∈S′

max
X = R and remove them

from all subsets X ∈ S′
max such that

⋂
X′∈S′

max
X

′
= ∅

i. if |R| = |
⋃
X′∈S′

max
X

′ | then put R to Ψ
′

ii. else assign each vertex v ∈ R to a subset X
′ ∈ S

′
max such

that f(X ′) is maximal and put these X
′

to Ψ
′

(c) set S
′
max = ∅

7. remove all vertices v ∈ V ′
=

⋃
X′∈Ψ′ X

′
from subsets in Ψ

8. remove empty sets in Ψ

9. if Ψ 6= ∅ go to step 2

10. assign each vertex v ∈ V \ V ′
to a subset X

′ ∈ Ψ
′

so that f(X
′
) is

maximal.

6.1.1 MaxQuality with relative flow function

The implementation uses relative flow for the quality function f as described
in section 5 and considers already used vertices in Ψ

′
, that means, in step 2

all v ∈ Ψ
′

were ignored.

6.1.2 MaxQuality with silhouette function

The implementation uses silhouette for the quality function f as described
in section 5 but only in step 2. In step 6.b.ii and 10 relative flow is used
also.

11

6.2 Hardening with SuperSet strategy

The SuperSet strategy works as follows:

1. Discard all subsets Xi such that ∃Xj : Xj ⊂ Xi.

2. Order all remaining Xj into a list L = {λ1, ..., λm} in descending order
with respect to the number of seeds that led to their computation.
Formally, let µ(λi) ⊆ V be the set of seeds of a subset λi. Then

i < j ⇒ |µ(λi)| ≥ |µ(λj)|.

3. Let k be the smallest index such that the union of all λi with i ≤ k
equals V :

k⋃
i=1

λi = V ∧ ∀j < k :

j⋃
i=1

λi ⊂ V.

Discard all λz ∈ L with z > k.

4. Re-assign each v′ to the subset(s) X ′ such that

X ′ = arg max
X∈{λ1,...,λk}

∑
v∈X w(v′, v)

|X|
.

5. Return the new subsets.

12

7 Developers section

This section goes beyond presenting the features of the CVK and shows
how to extend the framework. It is intended for advanced users that aim
at integrating their own algorithm or measures in the suite. The developers
section is divided into four subsections. The first given an introduction
to the packages and describes how to extend the CVK by integrating own
algorithms. Then the following sub sections lists the dependencies, bugs and
change log.

7.1 Packages

The CVK contains two main packages. The bf package, which contains the
implementations of the BorderFlow and the kNN algorithms and the cvk
package, which contains the core of the cvk framework. All details of the
interfaces, methods and classes implemented in the CVK can be found in
the Javadoc of the project8. The best entry point to understand the way
the CVK functions is the cvk.gui.Main class.

7.1.1 The cvk package

This package contains the CVK framework per se and is surely the more
interesting package for developers. Figure 7 gives an overview of all sub-
packages contained in the CVK package, including with a short description
of their functionality.

Figure 7: Package cvk.*.

cvk.data

This package provides classes to read or generate data. The resulting graph
is stored into a prefuse.data.Graph instance in a Model instance which has
a instance of cvk.cluster.ClusterContext to get access to a current used in-
stance of cvk.cluster.ClusteringAlgorithm class (compare figure 8).

8http://borderflow.sourceforge.net/doc/index.html

13

http://borderflow.sourceforge.net/doc/index.html

The Model class is the only class that needs to be accessed by external
classes to read input data by means of the integrated EdgeListGraphReader
or GraphMLReaderMod, to generate graphs by using the GraphGenerator
and to assign tasks to the currently chosen cvk.cluster.ClusteringAlgorithm
instance.

Figure 8: Package cvk.data, cvk.cluster and cvk.harden.

14

cvk.cluster

Figure 9: Abstract ClusterAlgorithm class.

This package contains the adapter classes (ClusterAlgorithmBorderFlow,
ClusterAlgorithmKNN, ClusterAlgorithmMCL) for all supported clustering

15

algorithms as shown in figure 8. Each of these adapter classed is inherited
from the abstract ClusterAlgorithm class and implements at least the ab-
stract clustering method as shown in figure 9. These adapters are managed
by the ClusterContext class.

The following example explicates how to implement and integrate an
adapter (ClusterAlgorithmFoobar) for self-developed algorithm (Foobar).
The general is pretty simple, all you need to do is:

1. Extend ClusterAlgorithm class by overriding the member String ar-
rays to set new configuration options and implement the abstract clustering
method.

public class ClusterAlgorithmFoobar extends ClusterAlgorithm{

public ClusterAlgorithmFoobar (){

config_A = new String []{"Label_A","value_1","value_2"};

}

@Override

protected Table clustering(

String [] seeds , double threshold ,

String values_A , String values_B ,

String values_C , String values_D){

Foobar.loadFile(filename , getSeparator ());

List <TreeSet <String >> clusters = Foobar.clusters(values_A);

Table table = getTable ();

for(TreeSet <String > cluster : clusters)

table.set(table.addRow(), CLUSTER_COLUMN_NAME , cluster);

return table;

}

}

2. Integrate the adapter by modifying the cvk.gui.Main.clusterVisualizationKitDemo()
method which starts CVK:

Model model = new Model ();

ClusterContext cc = model.getClusterContext ();

cc.addAlgorithm("Foobar", new ClusterAlgorithmFoobar ());

JPanel content = new Application(model). getJContentPane ();

In 1. the four String parameters of the clustering method, comes from
the member String arrays config A ,..., config D and can be used to provide
possible paramaterizations of the novel algorithm. For example, the imple-
mentation of kNN uses config A = new String[]{”k”,”1”,...,”100”} for the
parameter k. It is important to notice that the first element of the array is
the JLabel for the parameter. A user can choose the other elements of each
array from a JComboBox in the application. These are the values that are
sent back to the clustering method as parameters so that they can be used
for configurations.

16

The String array parameter (seeds) gets all nodes that were added in Nodes
table (figure 5-left) to use as seeds. If no seeds added to the table, the seeds
parameter will be null.
The double parameter (threshold) gets a value between 0 and 1 selected by
the user from the Threshold slider.
The return statement is a prefuse.data.Table with a specified column which
holds the cluster data sets. The column name (CLUSTER COLUMN NAME)
and data type (CLUSTER COLUMN NAME TYPE) are defined in Clus-
terTableSettings interface and are set to “Cluster” and TreeSet of String.
The getTable() method gets a valid table instance.
The String member variable filename contains the path to a delimiter sepa-
rated text file, the used separator get back by getSeparator() method.
It is possible to add more informations to the returned prefuse.data.Table
instance, which will be displayed in the cluster list under the graph tab.

In 2. the first parameter of addAlgorithm(...) method is the name
of your algorithm shown in the application and has to be different from
already existing names. The second parameter is your algorithm instance.
By starting the application all algorithm adapters will be instantiated.

cvk.harden

Figure 10: Abstract Harden class.

This package contains the hardening strategies (described in section 6).
The hardening techniques implemented in this package can be used by all
other algorithms implemented within the CVK.

17

A detailed description for developers will come soon. Until then, we
refer to the implementation of the BorderFlow adapter (ClusterAlgorithm-
BorderFlow).

7.1.2 The bf package

This package contains the BorderFlow and the k-Nearest Neighbors algo-
rithms (described in section 4), which were available from the beginning of
this project on. The BorderFlow algorithm was developed independently
from the CVK and integrated in agreement with its main developer.

7.1.3 The mcl package

This package contains the implementation of the MCL algorithm adapter.

7.2 Dependencies

7.2.1 Prefuse

ClusterVisualizationKit uses the prefuse toolkit and therefore the prefuse
library beta-20071021 has to be included in your lib folder.
http://prefuse.org

7.2.2 Lucene

The prefuse toolkit supports a fast search with the Lucene search engine
and we use it certainly. The library of Lucene search engine version 1.4.3
has to be included in your lib folder also.
http://lucene.apache.org/java/1_4_3

7.2.3 Jung

The “Java Universal Network/Graph Framework” is used to generate ran-
dom graphs.
http://jung.sourceforge.net

7.3 Bugs

The application contain no critical bugs (i.e., bug that lead to a system
failure) as far as we are awate. Still some minor bugs are still included
in the library we utilize as listed in the subsequent section. Please do not
hesitate to contact us if you have any helpful tips or comments on how
to avoid these bugs. Furthermore, any feedback on unknown bugs will be
greatly appreciated.

18

http://prefuse.org
http://lucene.apache.org/java/1_4_3
http://jung.sourceforge.net

java.lang.IllegalArgumentException

An IllegalArgumentException with an invalid row index is thrown after a
clustering task sometimes.

7.4 Change Log

Version - beta 0.4 (9. August 2010)

Added toolbar, java look and feel
Added measurements
Added mcl algorithm
Fixed some small bugs

Version - beta 0.3 (7. July 2010)

Added java doc to source
Added graph generator for cliques and Erdos-Renyi
Added harden for all algorithms
Added split package cvk.data to package cvk.data.cluster
Fixed covered draw of clusters
Fixed ClusterAlgorithm class hierarchy
Fixed some small bugs

Version - beta 0.2 (23. Jun 2010)

Added image export
Added graphml and delimiter file support
Added load example graphs from menu
Added log to file
Added choice of a node from node list
Added edge list in graph statistic
Added knn algorithm
Fixed ConcurrentModificationException
Fixed some small bugs

Version - beta 0.1 (31. May 2010)

First release.

19

References

[1] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data:
An Introduction to Cluster Analysis (Wiley Series in Probability and
Statistics). Wiley-Interscience, March 2005.

[2] Axel-Cyrille Ngonga Ngomo and Frank Schumacher. Border flow a local
graph clustering algorithm for natural language processing. In Proceed-
ings of the 10th International Conference on Intelligent Text Processing
and Computational Linguistics (CICLING 2009), pages 547–558, 2009.
Best Presentation Award.

[3] Peter Rousseeuw. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. J. Comput. Appl. Math., 20(1):53–65, 1987.

[4] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22:888–905, 2000.

[5] S. van Dongen. A Cluster algorithm for graphs. PhD thesis, Centrum
voor Wiskunde en Informatica, 2000.

20

	Introduction
	Purpose
	Requirements

	Using the CVK
	Launching
	Loading data
	Loading User-Generated Data
	Loading automatically generated data

	Configuring
	Clustering

	Supported Data Formats
	GraphML/XML
	CSV/SSV/Tab/Txt

	Supported algorithms
	BorderFlow
	k-Nearest Neighbours
	MCL

	Measurements
	Median of average silhouette width
	Average relative flow
	Normalized Cut

	Hardening
	Hardening with MaxQuality strategy
	MaxQuality with relative flow function
	MaxQuality with silhouette function

	Hardening with SuperSet strategy

	Developers section
	Packages
	The cvk package
	The bf package
	The mcl package

	Dependencies
	Prefuse
	Lucene
	Jung

	Bugs
	Change Log

